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Abstract: We show how certain non-perturbative superpotentials W̃ (Σ), which are

the two-dimensional analogs of the Seiberg-Witten prepotential in 4d, can be computed

via geometric engineering from 4-folds. We analyze an explicit example for which the

relevant compact geometry of the 4-fold is given by P
1 fibered over P2. In the field

theory limit, this gives an effective U(1) gauge theory with N = (2, 2) supersymmetry in

two dimensions. We find that the analog of the SW curve is a K3 surface, and that the

complex FI coupling is given by the modular parameter of this surface. The FI potential

itself coincides with the middle period of a meromorphic differential. However, it only

shows up in the effective action if a certain 4-flux is switched on, and then supersymmetry

appears to be non-perturbatively broken. This can be avoided by tuning the bare FI

coupling by hand, in which case the supersymmetric minimum naturally corresponds to

a singular K3.
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1 Introduction

String duality has proven to be an extremely useful tool for investigating non-perturbative

properties of supersymmetric gauge and other types of theories. Currently there are two

complementary approaches: “geometric engineering” [8, 15, 19, 9, 12, 10] makes use

of the local singular geometry of compactification manifolds, while the other approach,

originating in [18], uses (essentially) parallel flat D-branes to model the relevant geometry.

The relation between these approaches has recently been illuminated in [1] for N = 2

gauge theories in four dimensions.

The power of the geometric approach for solving gauge theories is that all gauge

groups can be treated systematically in the same way. So far, most of the more concrete

results that have been obtained from geometric engineering [30, 8, 9, 10] concern N = 2

supersymmetric gauge theories in d = 4 [42],1 but obviously theories with N = 1 super-

symmetry are phenomenologically more important. Such theories have been investigated

in [12], and from the D-brane point of view, for example in refs.[13, 14].

1For reviews see [2, 5].
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It would certainly be interesting to apply similar methods to obtain non-trivial infor-

mation about N = 1 supersymmetric theories in four dimensions. Since such theories can

be obtained from F -theory compactifications on elliptic 4-folds X [23], this suggests to

study “local” (or “rigid”) mirror symmetry2 of the relevant singular geometries of these

4-folds. However, F -theory is at present still quite hard to deal with directly, and it seems

a bit simpler to study instead compactifications of type IIA strings on the same kind of 4-

folds. Such compactifications lead to N = (2, 2) supersymmetric theories3 in d = 2, which

may be viewed as reductions of the corresponding N = 1 theories in four dimensions. In

type II string theory we can then use mirror symmetry in a more straightforward fashion,

but nevertheless may expect that some of the relevant novel features of 4-folds can be

captured in this simplified two-dimensional setting. It is the purpose of the present paper

to gain some insight in how 4-folds work, by investigating a specific example.

2 Holomorphic Fayet-Iliopoulos potentials

Among of the most basic problems are 4-fold geometries that lead to gauge theories in two

dimensions. Certainly gauge fields do not propagate in d = 2, but the scalar components

σ of the N = (2, 2) supermultiplets do. More specifically, the relevant supermultiplets are

the “twisted chiral” field strength multiplets, Σ ∼ σ + . . . + θ+θ̄−(D − iF ), which obey

D̄+Σ = D−Σ = 0, while matter fields correspond to the ordinary chiral multiplets Φ with

D̄±Φ = 0, etc. The most general lagrangian involving these two sorts of fields [20] consists

of a generalized Kähler potential K(Σ, Σ̄,Φ, Φ̄) plus holomorphic chiral and twisted chiral

potentials, W (Φ) and W̃ (Σ). In absence of chiral matter multiplets Φ, the twisted chiral

multiplets Σ are equivalent to the Φ, and can be transformed into them [20].

Thus, integrating out massive chiral matter fields, the effective action of a gauge theory

will simply be a twisted (2, 2) supersymmetric sigma-model, given by some K(Σ, Σ̄) plus

possibly some twisted chiral potential W̃ (Σ). We take the scaling dimension of Σ to be

equal to one, so that the Kähler potential has to be multiplied by the squared inverse of a

dimensionful gauge coupling and so becomes an irrelevant operator in the infrared. The

other piece of the lagrangian, the twisted chiral potential, plays the rôle of a generalized

Fayet-Iliopoulos term [6, 7, 38, 43]:

i

2
√

2

∫
dθ+dθ̄− W̃ (Σ) + c.c. = −ξ(σ)D +

θ(σ)

2π
F . (2.1)

It gives rise to an effective, field dependent complex FI coupling:

τ(σ) ≡ i ξ(σ) +
θ(σ)

2π
= W̃ ′(σ) . (2.2)

The twisted chiral potential W̃ (σ) is the semi-topological, holomorphic quantity that is

the analog of the SW prepotential F(a) [42] in four dimensions, and which is of our main

2General aspects of mirror symmetry of d-folds have been first discussed in [27]; specifically 4-folds

were analyzed in detail in [3] and subsequently in [4].
3In D-brane language, such theories have recently been investigated in [43].
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interest. The FI coupling τ is the analog of the running gauge coupling in 4d, being

dimensionless and subject to RG flow. Indeed, it is known [6] that τ receives logarithmic

perturbative corrections to exactly one loop order,

τ(σ) = τ0 −
N

2πi
log(σ/µ) + . . . , (2.3)

where µ is the RG scale. If we interpret the sigma-model in terms of a gauge theory, then

N = TrQ, where Q is the U(1) charge of the charged chiral matter fields.

Clearly, logarithmic monodromy shifts induce shifts of the theta-angle, exactly like for

N = 2 gauge theories in four dimensions. For positive N and Im τ , the theory is asymp-

totically free in the FI coupling, which means weakly coupled for large σ. We generically

expect additional non-perturbative corrections to τ(σ) in (2.3), the n-th instanton sector

being weighted by βn, where β = e2πiτ0µN ≡ eiθ0−2πξ0µN .

An important difference as compared to the four dimensional gauge theory is that

there is a non-trivial scalar potential:

V (σ) =
1

2
|τ(σ)|2 . (2.4)

This means in particular that the vacuum energy depends on the theta-angle [22, 6]. It

also means that supersymmetry is broken if τ(σ) is everywhere non-vanishing. Semi-

classically, where we only consider the perturbative correction in (2.3), there will be N

vacuum states, given by σ = β1/N plus rotations by the Z2N R-symmetry; each VEV

breaks the R-symmetry to Z2.

3 Mirror symmetry

Like in four dimensions, the gauge multiplets Σ are one-to-one to the Kähler classes

belonging to H1,1(X), while the chiral matter fields correspond to the complex structure

moduli belonging to H3,1(X). Since the type IIA dilaton is in a gravitational multiplet,

which is real rather than twisted chiral, the holomorphic twisted chiral potential W̃ (Σ)

does not get any type IIA space-time corrections. On the other hand, there will in general

be corrections from world-sheet instantons to the Kähler sector, reflecting perturbative

and non-perturbative corrections in the dual heterotic string language. The issue is to

compute these corrections to W̃ (Σ) via mirror symmetry, which maps the type IIA string

on the 4-fold X back to the type IIA string on the mirror 4-fold, X̂. In addition, the

rôles of complex structure and Kähler moduli get exchanged. Thus in the mirror theory

the complex structure sector is not corrected at all, as there are no 3-branes in the type

IIA string that could wrap the middle homology 4-cycles, and a tree-level computation

is exact.

In order to see what precise tree-level correlator we will have to compute to obtain

W̃ (Σ), consider the following tree-level Chern-Simons term in the d = 10 type IIA string:

LCS = B ∧ F4 ∧ F4 , (3.1)
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where F4 is the field strength of the 3-form field. On the 4-fold X we can then expand

B = σO(1) , F4 = νO(2) + F ∧O(1) , (3.2)

where O(i) represent elements of H i,i

∂̄
(X,Z). The occurrence of 4-forms O(2) [3, 4] and the

related scalars ν is a novel feature as compared to usual 3-fold compactifications. The

important point is that at the quantum level, ν is an integer c-number:∫
C4
F4 = ν ∈ Z (3.3)

(or possibly ν ∈ 1
2
Z), which is known as “4-flux” [44, 24, 25]. Therefore (3.1) leads to a

two-dimensional FI coupling of the form σ F ν 〈O(1)O(1)O(2)〉, which means that

W̃ ′′(σ) = ν 〈O(1)O(1)O(2) 〉IIA . (3.4)

We see that the FI coupling is proportional to the 4-flux, and since non-trivial FI terms

typically do exist, ν will generically have to be non-zero. On the other hand, unbroken

supersymmetry tends to favor ν = 0, though this is not strictly required [24, 36]. We will

come back to this point later in subsection 5.2.

One might wonder about fivebrane instantons wrapping around appropriate 6-cycle

divisors, producing corrections to the Kähler sector that may not be captured by mirror

symmetry; indeed such instantons do lead to potentials in M- and F -theory compact-

ifications to three and four dimensions [49, 11]. There is a simple argument why such

instantons do not contribute to W̃ , the reason being the non-zero flux ν. More specif-

ically, it is known that on the fivebrane world volume, there is a self-dual 2-form field

with field strength T3 which obeys dT3 = F4. As pointed out in [50], from this follows

that a wrapped 5-brane implies F4 to be cohomologically trivial, i.e., ν = 0 in (3.3).

Conversely, a non-zero 4-flux (emanating from a submanifold C4 of the 6-cycle) prohibits

the wrapping of the fivebrane, and thus there are no fivebrane instanton corrections to

W̃ .4

The 3-point function in (3.4) is a correlator in topological field theory that can be

evaluated via mirror symmetry [27, 3, 4]. When twisting by the internal U(1) current we

can project on either the chiral or on the twisted chiral subsector of the theory. When

twisting left-right symmetrically, the background charges are (−4,−4) and thus we project

on the Σ-sector where the basic correlators are

C112 = 〈O(1)O(1)O(2) 〉 , C1111 = 〈O(1)O(1)O(1)O(1) 〉 . (3.5)

Both O(1) and O(2) survive the topological twist (as they obey h = q/2), even though the

4-form operators do not represent continuous but discrete moduli of the TFT. Note that

only the three-point function and not the four-point function contributes to a holomorphic

4This makes sense also from the point of view of M - and F -theory compactifications on X , where

ν〈O(1)O(1)O(2) 〉class is the coefficient of Chern-Simons and GS anomaly cancelling terms, respectively.

Such topological couplings are supposed not to be corrected.

4



J
H
E
P
1
1
(
1
9
9
7
)
0
0
4

potential. Indeed after twisting (and setting O(i) → O(i)e−φ−φ̄), one needs exactly three

and not four operators in the (−1,−1)-picture, and therefore one has to insert an extra

picture changing operator in the four-point correlator. This introduces momentum factors

which means that the four-point function contributes to the Kähler potential and not to

W̃ .

Note also that on 3-folds, the 4-forms are dual to 2-forms so that they are not in-

dependent. In contrast, for 4-folds the H2,2 sector is independent and generically quite

large, and in general only a small subset of H2,2 will be related to the sub-sector we are

interested in (the ”primary subspace” generated by wedging the (1,1)-forms). In partic-

ular, for theories with one modulus, the relevant 4-form is simply O(2) ∼ (O(1))2, and

therefore we have from factorization [27]:

C1111 ∼ (C112)2 . (3.6)

4 An example: P2 fibered over P1

The best understood example for geometric engineering is pure N = 2 Yang-Mills the-

ory [42] in d = 4, where the relevant type IIA 3-fold geometry is given by an A1 singularity

fibered over P1 [8]. Since such a singularity describes a vanishing 2-sphere, the local ge-

ometry is effectively given by a fibration of P1 over P1, i.e., by a Hirzebruch surface.5

The type IIB mirror geometry of this fibration is indeed exactly given by (a non-compact

form of) the SW curve [9, 10].

Our intention is to stay as close as possible to this situation, and simply to try to see

what will come out for a 4-fold as compared to a 3-fold. The closest relative of the SW

geometry for a 4-fold is given by a fibration of the same P1 over a P2 base. In the field

theory limit, one naively expects this to give rise to a reduction on P2 of a six-dimensional

SU(2) gauge theory down to two dimensions, the SU(2) arising from the fiber P1. At any

rate, whether this expectation bears out or not, the low-energy effective theory that we

will obtain is a U(1) gauge theory, and our task is to compute its twisted chiral potential

W̃ .

On general grounds [3, 4], the contributions from world-sheet instantons (including

multi-covers) to the potential will be of the form W̃ = Q(tf , tb) +
∑
ni,jLi2(qifq

j
b) (where

Q is a quadratic function of the Kähler moduli associated with fiber and base, and qf,b ≡

e2πitf,b). It will turn out, exactly like in four dimensions [9], that wrappings of world-

sheet instantons around the P1 fiber produce, in the rigid limit, the logarithmic one-loop

contribution to W̃ (from Li2(1 +
√
α′σ) ∼ const +

√
α′σlogσ), and wrappings around the

various classes of the P2 base give additional non-perturbative corrections.

4.1 Picard-Fuchs system

Taking toric geometry as starting point, we choose the following Mori (charge) vectors to

5Together with the normal bundle on it, this yields a non-compact 3-fold whose compact part is the

fibration. We will in the following not explicitly mention the non-compact parts of 3- or 4-folds.

5



J
H
E
P
1
1
(
1
9
9
7
)
0
0
4

describe the fibration data of the non-compact 4-fold:

lf = (−2, 1, 0, 0, 0, 1) , (P1 fiber),

lb = (0, 0, 1, 1, 1,−3) , (P2 base).
(4.1)

Following standard methods (see e.g., [5]), the non-compact mirror then looks, up to

quadratic pieces:

W = zb x2
4 + zf x1

2 x3 x4 + x1 x2 x3 x4 + x2
2 x3 x4 + x2 x3

2 x4 + x2 x3 x4
2 (4.2)

(which involves the canonical parameters: zf = a2a6

a2
1

, zb = a3a4a5

a3
6

). The associated Picard-

Fuchs system is (θf ≡ zf∂zf , etc):

Lf = θf(θf − 3θb)− 2zfθf (2θf + 1)

Lb = θb
3 − zb(θf − 3θb − 2)(θf − 3θb − 1)(θf − 3θb)

and we find for the relevant components of the discriminant:

∆1 = (1 + 27zb)
4

∆2 = (1− 4zf)
3 − 1728z3

fzb.

Note the cubic splitting of the classical A1 singularity at zf = 1/4. The rigid field theory

limit we are interested in, amounts to taking the base P2 large and the fiber P1 small.

This is localized in the moduli space at the point of tangency zf = 1/4, zb = 0, which

needs to be properly blown-up [30]. Suitable variables for this double-scaling limit are

given by

z1 = 4zf − 1 ≡ α′u

z2 = −
3zb

1/3

4zf − 1
≡

β1/3

u
.

which leads to ∆2 ∼ α′3(u3 − β) + O(α′4). Hence we are left with only one independent

variable in the rigid limit α′ → 0, so that effectively one U(1) factor decouples. We also

see that by dimensional transmutation a scale µ is introduced in this process, zb ∼ e−S ∼

(α′)3µ6e2πiτ0 , where S is the heterotic dilaton. This means that β ≡ e2πiτ0µ6, and that u

has mass dimension 2. From now on, we will mostly set β = 1.

After rescaling the periods, the above PF system reduces to the following differential

operator:

Lf → 0

Lb → LR ≡ (2θ2 + 1)3 − 8z2
3θ2(θ2 + 1)(θ2 + 2) .

Note that this operator, coming from the base P2 and not from the fiber, is of third

order, which is the natural order of a PF operator associated with a 2-fold. In terms

6
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of the inverse variable u = 1/z2, it constitutes a generalized hypergeometric equation of

type6
3F2(−1

6
,−1

6
,−1

6
; 1

3
, 2

3
; u3), with standard series solutions around u = 0.

The moduli space thus has three singularities at u3 = 1, plus one at u = ∞, which

is the weak-coupling limit of the rigid theory. In the weak-coupling region, the three

solutions behave as σ ∼
√
u, σD1 ∼

√
u log u, σD2 ∼

√
u(log u)2, where σ represents the

scalar component of the U(1) gauge superfield Σ. Since u has mass dimension two, σ has

mass dimension equal to one, and this exactly what we had assumed in section 2.

Moreover, we find that the derivatives

∂

∂u

 σ

σD1

σD2

 (u) ≡

 ω

ωD1

ωD2

 (u) (4.3)

are solutions of a generalized hypergeometric equation of type 3F2(1
6
, 1

6
, 1

6
; 1

3
, 2

3
; u3). These

correspond to the periods of the holomorphic 2-form, Ω2,0 ≡ (∂WK3

∂x
)−1 dz

z
∧ dw

w
, that is

associated with the following “rigid” K3 surface:

WK3 = z + w −
1

27zw
+ (x2 + u) = 0 . (4.4)

This K3, which arises from (4.2) in the rigid limit after appropriate rescalings, is the 2d

analog of the elliptic curve [42] in four dimensions. Indeed from (4.3) we conclude, in

complete analogy to SW theory, that σ, σD1, σD2 are periods of a specific meromorphic

2-form

λ2 = −2 x
dz

z
∧
dw

w
= −2i

√
z + w −

1

27zw
+ u

dz

z
∧
dw

w

on the auxiliary K3 surface, which has the characteristic property

∂

∂u
λ2 = Ω2,0 . (4.5)

4.2 Properties of the periods

Note that K3 periods are algebraically dependent, ωωD2 ∼ ωD1
2, whence there is only

one independent ratio:

τK3(u) =
∂uσD1(u)

∂uσ(u)
,

∂uσD2(u)

∂uσ(u)
= (τK3(u))2. (4.6)

In fact, it is known for some while [31, 32] that the PF equation of a single-modulus K3

can be reduced to a Schwarzian differential equation for τ . Specifically, following [31] we

find from the K3 PF equation:

{τK3(u); u3} =
36u6 − 41u3 + 32

72u6(u3 − 1)2 , (4.7)

6For SU(2) SW theory in d = 4, the analogous system is of type 2F1(− 1
4 ,−

1
4 ; 1

2 ;u2).
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which implies that

u3(τK3) =
1

1728
j (τK3) , (4.8)

where j is the well-known modular invariant. Hence the monodromy group generated in

the u3-plane (with singularities at 0, 1,∞) acting on τK3 is the modular group SL(2,Z);

this is indeed a typical feature ofK3 surfaces [32]. The monodromy group for our preferred

parametrization, which is the u-plane, is then the corresponding index 3 normal subgroup

Γ1 [40] with branch scheme (1, 3, 3) (with T 3 : τK3 → τK3 + 3 as one of its generators).

The specific linear combinations of the PF solutions that correspond to the integral

geometric periods can be determined in various ways, e.g., by considering the asymptotic

expansion of the period integrals. The geometric periods we find turn out to be most sim-

ply expressed in terms of their derivatives, i.e., in terms of the standard K3 periods (4.3).

This is because the K3 periods can be written [31, 32] in terms of ordinary hypergeomet-

ric functions, and this is very convenient for analytic continuation. Explicitly, we find for

the geometric periods $ ≡ (σ, σD1, σD2)t (up to integral changes of basis):

∂

∂u
$ ≡

 ω

ωD1

ωD2

 =

 ζ0
2

ζ0ζ1 − iζ0
2

ζ1
2 − 2iζ0ζ1 − ζ0

2

 , (4.9)

where

ζ0 = (u3 − 1)−1/12
2F1

( 1

12
,

7

12
, 1,

1

1− u3

)
ζ1 = iγ 2F1

( 1

12
,

1

12
,
1

2
, 1− u3

)
, with γ ≡

Γ(1/12)Γ(5/12)

2π3/2
.

At weak coupling, the precise forms of the leading terms are:

σ(u) = 2
√
u+O(u−5/2)

σD1(u) =
3i

π

√
u(log[12u]− 2) +O(u−5/2) (4.10)

σD2(u) = −
9

2π2

√
u(log[12u]2 − 4 log[12u] + 8) +O(u−5/2).

The periods turn out to obey the following identity:

u(σ) = −
72

π2
$ · C ·$ , with intersection form C ≡

 0 0 1

0 −2 0

1 0 0

 , (4.11)

which reflects the algebraic dependence of the K3 periods. Using the well-known formu-

las for the analytic continuation of hypergeometric functions, and (4.11) for fixing the

integration constants, we find for the periods near the singularity w ≡ (u− 1)→ 0:

σ(w) =
(γ2

4
+

36

π2γ2

)
+

1

4
wγ2 −

2w3/2

√
3π

+O(w2)

σD1(w) =
(iγ2

4
−

36i

π2γ2

)
+

1

4
iwγ2 +O(w2) (4.12)

σD2(w) = −
(γ2

4
+

36

π2γ2

)
−

1

4
wγ2 −

2w3/2

√
3π

+O(w2)

8
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Note their power-like, non-logarithmic behavior near the strong coupling singularity.

From (4.11) and (4.13) we infer the following monodromy matrices (acting on $) as-

sociated with u =∞, 1:

M∞ =

−1 0 0

−3 −1 0

−9 −6 −1

 ≡ T 3

M1 =

 0 0 −1

0 1 0

−1 0 0

 ≡ S , with S2 = 1

(4.13)

and similar (via conjugation) for the other two strong coupling singularities. We observe

an “S-duality” at u = 1, associated with τK3(0) ≡ ∂wσD1

∂wσ
|w=0 = i. Note also that in

contrast to an elliptic curve, where the point of enhanced Z2 symmetry corresponds to

a smooth curve, this point corresponds here to a singular K3 with vanishing period

σ + σD2|(w=0) = 0.

4.3 The quantum FI coupling

We are now equipped to compute correlation functions. The 4-point function is particu-

larly easy to compute, because it is encoded in the PF system. One can actually obtain

the rigid coupling directly from the rigid PF equation, which is even simpler. Concretely,

the classical coupling is defined by

Cuuuu = −
∫
X

Ω4,0 ∧ ∂u
4 Ω4,0 .

In the rigid limit, and integrating out two dimensions exactly as in [8], the holomorphic

4-form turns into the meromorphic 2-form on the K3, so that

Cuuuu =
∫
K3

(∂uλ2) ∧ ∂u
3 λ2 =

∫
K3

Ω2,0 ∧ ∂u
2 Ω2,0 .

where we used (4.5). We can then use that the periods (4.3) satisfy the hypergeometric

system of type 3F2(1
6
, 1

6
, 1

6
; 1

3
, 2

3
; u3), which is of the form LK3 =

∑
fk(u)∂u

k. Following a

similar strategy as in [37], by defining

V (k)(u) ≡
∫
K3

Ω2,0 ∧ (∂u)
k Ω2,0 = ω(∂u)

kωD2 + ωD2(∂u)
kω + κωD1(∂u)

kωD1

(where the self-intersection number κ is any constant), we know that

0 =
∑

fk(u)V (k)(u) ≡ (1− u3)V (3) −
9

2
V (2)u2 −

13

4
V (1)u−

1

8
V (0) .

On the other hand, V (0) = V (1) = 0 (due to the algebraic dependence of the periods) and

V (3) = 3
2
∂uV

(2) − 1
2
∂u

2V (1), whence 3u2V (2) + (u3 − 1)(V (2))′ = 0. This has as solution

V (2)(u) ≡ Cuuuu =
1

u3 − 1
,

9
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something one might have guessed beforehand. Using u ∼ σ2 + O(σ−4) the coupling in

the flat variable σ thus is

Cσσσσ =
1

u(σ)3 − 1

(∂u(σ)

∂σ

)4
∼

1

σ2
+O(σ−8) .

We are however interested in the 3-point coupling Cσσ ≡ C112; from factorization of am-

plitudes (3.6) we have that Cσσσσ(σ) ∼ (Cσσ(σ))2 which gives Cσσ ∼ 1/σ+ . . .. By (3.4),

this can be two times integrated to finally give the twisted chiral potential. In fact, we

find that

W̃ (σ) = σD1(σ) , (4.14)

up to integration constants. This reflects the result [3, 4] for the non-rigid case, that the

cubic couplings C112 are given by second derivatives of the “middle” periods with respect

to flat coordinates. Comparing to (4.6) it thus follows that the Fayet-Iliopoulos coupling

τ in (2.2) coincides with the modular parameter of the auxiliary K3 surface, up to a

possible integration constant:

τ(σ) ≡ W̃ ′(σ) = τK3(σ)

= τ0−
6

2πi

[
log(

σ

µ
)−

100

27

β

σ6
−

18898

243

( β
σ6

)2
−

144674080

59049

( β
σ6

)3
+ . . .

]
, (4.15)

where the bare coupling is τ0 = 3i
2π

log 3. Above, we inferred the normalization, i.e. the

factor N = 6, from u3 = j(τ), and we have reinstated the dependence on β ≡ e2πiτ0µ6.

Because N is positive, the theory is indeed asymptotically free.

Note that W̃ (σ), being given by a period integral,7 transforms non-trivially under

monodromies induced by looping around the singularities in the moduli space. It is thus

a section and not a function, as it is usual for holomorphic quantities in supersymmetric

theories. The identification W̃ (σ) = σD1 also makes sense from the point of view of

central charges: in analogy to N = 2 gauge theory in 4d, one would be tempted to write

for the central charge of the superalgebra: Z = nσ + mσD1 + kσD2, and it is indeed well

known [46] that in 2d the superpotential figures in the central charge.

Formally, n,m, k correspond to quantum numbers associated with D2, D4, D6 branes

of the type IIA string wrapped around 2, 4, 6-cycles of the 4-fold, respectively. In this

sense the singularity at u = 1 would be associated with a massless state with (n,m, k) =

(1, 0, 1). However, such an interpretation appears to be problematical in d ≤ 3, because

of divergences the BPS mass formula does not make much sense for fields charged under

local gauge currents [47].

4.4 Rigid special geometry

One might a priori expect some generalization of rigid special geometry [45] to constrain

the Kähler potential K(Σ, Σ̄).8 Indeed there is a natural expression for a Kähler potential

7Superpotentials identified with period integrals recently came up in N = 1 SQCD [14].
8Of course, the Kähler potential is not protected from quantum corrections, so this is to be taken cum

grano salis.
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for any d-fold, given by e−K =
∫

Ω ∧ Ω̄. In the rigid limit, the natural expression for our

rigid Kähler potential thus is

K(σ, σ̄) = $ · C · $̄ = σ σ̄D2 + σ̄ σD2 − 2σD1σ̄D1

∼ σσ̄ + σσ̄(log(σ) + log(σ̄))2 + . . . (4.16)

which leads to the following metric:

g(σ, σ̄) ≡ ∂∂̄K(σ, σ̄) = (Im τ(σ))2
, (4.17)

where τ is the FI coupling as above. Note that the metric (4.17) is invariant under

discrete theta-shifts, τ → τ + m, despite of the unusual asymptotic form of the Kähler

potential (4.16). Indeed K looks similar but different as compared to the familiar one-

loop Kähler potentials of the CP1 model or the SU(2) gauge theory. The latter has the

form [34] K1−loop =
∫
e2

dy
y

log(1 + σσ̄
y

) = Li2(σσ̄
e2

) ∼ log(σ) log(σ̄), which lacks the prefactor

σσ̄ of our Kähler potential (as it must be on dimensional grounds; in contrast, our field σ

has scaling dimension equal to one). At any rate, the important structure is the presence

of quadratic logarithms, and this is a characteristic property of “rigid” 2-folds.

The generalization to 3-folds and 4-folds of the well-known special geometry relation,

R ∼ 2g2 + eKg−1C111C111 [35], has been discussed in [27]. In the rigid limit, this general-

ization takes the form Rσσ̄σσ̄ ∼ (R−1)σσ̄σσ̄CσσσσCσσσσ , which in view of the factorization

property (3.6) is equivalent to

Rσσ̄σσ̄ = 2CσσCσσ . (4.18)

Using the couplings Cσσ = τ ′ as well as R = g∂̄g−1∂g, it is trivial to check that this

relation is indeed satisfied, showing consistency of our results. Note also that by taking

derivatives of the metric (4.17) and using (3.6), we get among other terms the following

term: σσ∂σ∂̄σ̄Cσσσσ . This shows that the holomorphic four-point correlator (3.5) indeed

contributes to the non-holomorphic Kähler potential.

5 Discussion

5.1 4-flux and matter

In our treatment of the example we have so far been tacitly neglecting the fact that the FI

potential W̃ really is multiplied by an integer number, the 4-flux ν in (3.4). The mirror

symmetry computation we have done concerns only the correlator C112 = 〈O(1)O(1)O(2)〉,

and is insensitive to the overall factor ν.

The superpotential W̃ (4.14) that we have been computing thus only, but then nec-

essarily appears if we turn on the 4-flux (if we were free to do so, see below). This has

various implications: first, since TrQ is proportional to ν, this is, from a field theory point

of view, equivalent to switching on charged matter. That is, in the effective lagrangian

we cannot distinguish the logarithmic term 6ν
2πi

Σ log Σ in W̃ that we get from geometry,

11
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from a field theory one-loop term TrQ
2πi

Σ log Σ, generated by integrating out massive chiral

matter multiplets. In other words, the effective theory behaves exactly in the way as

there would be charged matter, although geometrically we did not put any in.

This may also have a bearing on chiral matter in N = 1 theories in four dimensions,

where there generically is a Green-Schwarz anomaly cancelling term of the form: LGS =

c (B ∧F ) with c ≡ TrQ. In F-theory compactified on a 4-fold, this term is obtained from

the following formal coupling [21] in twelve dimensions: L = A4 ∧ F4 ∧ F4, where A4 is

a 4-form gauge field. That is, upon expanding A4 = B ∧ O(1) and F4 as in (3.2), one

obtains this coupling with c = ν 〈O(1)O(1)O(2)〉class, where ”class” denotes the classical

intersection (what figured in d = 2 was the world-sheet corrected quantum version of

this). This means that whenever there is an anomalous U(1) in d = 4, in F -theory

language some 4-flux ν must to be non-zero. Turning this around, switching on ν may in

some sense implement chiral matter.

In addition it must be that SU(2) is broken when we switch on ν, simply because TrQ

vanishes identically for any non-abelian group. Indeed, the resulting potential
∫
νW̃ (Σ) ∼

ν(Σ + Σ log Σ + . . .) is not invariant under discrete Weyl transformations (Σ → −Σ).

However only mildly so: it just changes sign, up to an additional theta-shift. Weyl

invariance of the effective theory can therefore be restored if we simultaneously flip the

signs of σ and of the symmetry breaking flux ν. In this way the theory exhibits the

presence of the SU(2) that was originally built in.

5.2 Supersymmetric vacua?

Another important implication of turning on 4-flux is a non-vanishing scalar poten-

tial (2.4), V ∼ ν2|τ(σ)|2, where the FI coupling is given in terms of the K3 periods (4.9)

as τ = τK3 ≡ ωD1(σ)/ω(σ). One may wonder whether there are any supersymmetric

vacua given by τ = 0.9 Semiclassically, where τ ∼ τ0 −
6

2πi
log σ, supersymmetric vacua

obviously do exist.

But non-perturbatively, τ is non-zero everywhere over the moduli space, because it is

a modular parameter living in three copies of the usual fundamental region. This means

that supersymmetry must be spontaneously broken! One might say that this happens

because the relevant 2-cycle has non-zero “quantum volume” [17] throughout the moduli

space. One could have speculated that there would be a zero quantum volume at the

conifold point u = 1, similar to what happens for certain vanishing del Pezzo 4-cycles [16],

but it did not turn out that way. Specifically we have at the conifold point τ = i, which

corresponds to a non-vanishing FI parameter, ξ = 1. Note that in view of (4.13), the

physics at the singularity is governed by a power-like, and not logarithmic, potential.

The story is however not that clearcut, as ν cannot, in general, be adjusted at will.

9This ties together with the following condition for a supersymmetric 4-form background [36]:

(F4)ab̄cd̄J
c̄d = 0, where J is the Kähler form. This Uhlenbeck-Yau type of equation implies [48]∫

J ∧ J ∧ F4 = 0, which leads to [3]
∑
titjνk〈O(1)O(1)O(2)〉 = 0, where ti are special coordinates.

We recognize here essentially the condition for a vanishing FI potential.
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Indeed from (3.1) one has in addition a tadpole Bν2〈O(2)O(2)〉, besides the 1-loop

tadpole B
∫
I8(R) [33], and all these tadpoles need to be cancelled together with contri-

butions from extra 1-branes [26]; this sometimes even forces ν to be non-zero [25, 39].

These considerations involve global properties of the compactification 4-fold X, while we

were discussing in our example only local properties. We neglected in particular possible

effects of extra tadpole cancelling branes. It may thus well be that in our local analysis,

we did not capture an important “global” ingredient, like a contribution to the vacuum

energy. What we have in mind is that there might be an extra bare FI coupling in the

potential,

W̃ (Σ) −→ W̃ (Σ) + ∂ Σ , (5.1)

which shifts the vacuum energy and restores a supersymmetric vacuum. In fact, in our

computation of W̃ in (4.14) there was room for an integration constant of exactly that

type, so all we can really say from our computation is that τ = τK3 + δ, though a non-

zero δ would not be natural from the geometrical point of view. Note that adding such a

constant also does not violate the special geometry relation (4.18).

It would appear particularly appealing to add such a term with δ = −i.10 Namely

without it, the potential V ∼ |τ |2 would have a flat direction along the lower boundary of

the fundamental region (the arc between Im τ = −1
2

and Im τ = +1
2
), which would not

seem to make much sense. After adding this term, the vacuum degeneracy is resolved, a

mass gap created and there is a supersymmetry preserving ground state located at the

self-dual conifold point u = 1 (τK3 = i). This would be in line with the arguments of [24]

that say when switching on p-form fluxes, potentials are generated whose minima lie on

conifold points.

The other two images of the conifold point (located at u = (−1)±2/3) correspond to

τK3 = i ± 1, i.e., to non-vanishing theta-angles ±2π. Physically, a non-zero theta-angle

describes a constant electric field that contributes to the vacuum energy [22]. The point

is that θ naturally lives in the domain −π ≤ θ ≤ π, because for |θ| > π the vacuum

energy can be reduced by pair creation to |θ| ≤ π. Semi-classically, one thus defines [6]

an effective theta-angle in terms of a piecewise smooth function θ̃ = θ + 2πn, such that

|θ̃| ≤ π.11

In this sense there are then six semi-classical vacua given by σn = e2πi(τ0+n)/6, n =

0, ..., 5, because all σn lead to θ̃ = 0. This gives a non-zero Witten index, which precludes

a spontaneous breakdown of supersymmetry. If we add δ = −i, then we consistently

have, in the same sense, also at the non-perturbative level six vacua, coming from the

three singularities at u3 = 1, each singularity counting two vacua because of the enhanced

Z2 symmetry there.

10For simplicity, we will set ν = 1 in the following
11A natural way to restore the 2π-periodicity of the effective theta-angle in the non-perturbative theory,

would be simply go to a triple cover of the moduli space, parametrized by ũ ≡ u3 = j(τK3), yielding a

smooth and 2π-periodic function for θ(ũ). This parametrization would be natural from the viewpoint of

K3 geometry, but not natural from the viewpoint of a fibered A1 singularity.
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5.3 Generalizations

One can easily see that all fibrations of P1 over P2 give the same rigid limit. In our

example, one may as well take for instance P1 × P2 with lf = (1, 1, 0, 0, 0,−2) and

lb = (0, 0, 1, 1, 1,−3), instead of (4.1). This is completely analogous to four dimensions,

where all the fibrations of P1 over P1 (the Hirzebruch surfaces Fn), give in the rigid limit

the same result, ie., the SU(2) Seiberg-Witten curve, for all n [9, 10]. Thus there is an

analogous universality for the 2d rigid theories based on P2.

Note however that since the base is two-dimensional, there is more than only one

choice for it: P2 just corresponds to the simplest possibility with the lowest number of

parameters. The ubiquitous factor of 3 we encounter (giving the order of splitting of

the classical singularity, the order of the PF operator, the value of N = 6 ≡ 2 × 3 and

the Z6 symmetry of the instanton expansion) traces back to the intersection of c1(P2)

with the h1,1 class, which is 3. For other choices of the base there will be other such

characteristic numbers, and therefore these theories will be different from the model we

have been discussing.

One can for instance also consider fibrations of P1 over Hirzebruch surfaces Fn, where

the global symmetry is Z8 = (Z2)3 instead of Z6. A new feature will be the appearance

of a second “quantum scale” β̃. Moreover, the rigid limit will be independent only in the

way P1 is fibered over Fn, but it will not be independent of n. One can easily see that

the resulting rigid surfaces have the form

WK3 = z + w +
β

z
+
znβ̃

w
+ (x2 + u) = 0 ,

which give quartic K3’s for n = 0, ..., 3. Obviously one has universality only in the limit

β̃ → 0, where one recovers the well-known SW gauge coupling, and indeed one may view

these theories as coming from fibrations of the SW geometry over a further P1 (whose

size is governed by β̃). Accordingly each of the two monopole singularities is split into

two further singularities, the scales of the two independent splittings being β and β̃.

For higher rank groups (i.e., general ADE singularities fibered over P2), we will gener-

ically not find K3 surfaces. This is similar to d = 4, where the SW curves for SU(n)

are not Calabi-Yau (i.e., c1 6= 0) for n > 2. For example, fibering an A2 singularity we

will end up with W = z + w + β6

zw
+ (x3 + ux + v) = 0, and the homogenous form of

this surface in WP(1, 1, 1, 1; 6) does not give a K3. We expect it to have not one, but

two holomorphic (2, 0) forms (and analogously n − 1 holomorphic (2, 0) forms for An−1

singularities, so that ∂uk+1
λ2 = Ω

(k)
2,0, k = 1, ..., n− 1).

For arbitrary groups G, there will be vectors of 4-fluxes and potentials W̃i ∼ (~αi ·
~Σ) log(~αi ·~Σ), of which rank(G) are independent. Integrating the topological term θ

2π
(~F ·~ν)

over 2d space time, we see that the 4-fluxes ~ν must indeed be quantized and dual to the

instanton numbers ~n = 1
2π

∫
d2x~F . They thus naturally lie on the corresponding weight

lattice, ~ν ∈ ΛG
w , and we expect this also to be reflected by the intersection properties of the

middle homology. Weyl invariance (up to theta-shifts) can be restored by simultaneously
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Weyl transforming ~σ and the symmetry breaking fluxes ~ν, and in this way the effective

theory exhibits the underlying group G.

6 Conclusions

We have been investigating a field theory limit of type IIA string compactification on cer-

tain 4-folds that have as compact piece a fibration of P1 over P2. The effective action is

given by a U(1)×U(1) gauge theory, where one U(1) factor decouples. It is characterized

by a complex Fayet-Iliopoulos coupling τ(σ) given in (4.15), which displays a logarithmic

one-loop piece plus further non-perturbative corrections. The twisted chiral superpoten-

tial W̃ (Σ) is given by the middle period of an auxiliary K3 surface. This surface encodes

non-perturbative information about the Coulomb branch of the effective U(1) theory, and

thus is the two-dimensional analog of the SW curve in four dimensions.

Although a priori the geometrical setup of this kind of theories appears to be similar

to that of N = 2 gauge theories in d = 4 [42], the theories turn out to be remarkably

different. What we find in d = 2 are not just the usual SU(2) (or more generally ADE)

gauge theories or Grassmannian models, but theories whose structure is richer.

An important difference as compared to 4d is that the perturbative piece of such a 2d

field theory does not fully determine the non-perturbative theory. That is, the logarithmic

one-loop term arises from wrappings of world-sheet instantons around the fiber, and is

universal for a given fibered ADE singularity. On the other hand, wrappings around

the various classes of the base manifold give non-perturbative corrections, and different

choices for the base provide different “non-perturbative completions” of the perturbative

theory. This is extra information which goes beyond the perturbative definition of the

theory, but which is required for the global consistency of the full theory. It may simply

be that one cannot well define the 2d theory unless it is embedded in a larger consistent

framework, and, unlike as in d = 4 where there is only one choice for the base, this

embedding turns out to be ambiguous.

Besides continuous moduli, the effective theory also possess discrete moduli to play

with, the 4-fluxes ν.

If there is no 4-flux turned on, the 2d theory is essentially a reduction of an ADE

gauge theory in six dimensions on some 2-fold base. For such a theory the holomorphic

potential W̃ (Σ) that we have been computing does not appear in the effective lagrangian.

Still, even for vanishing ν, there remains some structure in the theory, namely a non-

trivial Kähler potential and a non-trivial complex structure moduli space. The Kähler

potential is not protected from corrections, and it is thus not clear what conclusions can

be drawn from the geometric expression for it given in (4.16).

In our example, the complex structure quantum moduli space has the form of a non-

abelian orbifold,M = H/Γ1, where Γ1 is the monodromy group of our problem. Strictly

speaking, since there is no good notion of a VEV in two dimensions, the moduli space

should rather be viewed as a target space of a sigma-model, to be functionally integrated

over. Remember however that a fivebrane instanton induced potential cannot be excluded
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if ν = 0 (see section 3), and is in fact expected to appear [49, 11]. Such a potential would

substantially change the vacuum structure. It is not clear to us, though, how to compute

it using mirror symmetry.

More interestingly, the theory looks very different if we turn on ν: then a non-trivial

potential W̃ (Σ) is generated, which breaks the ADE symmetry and which reflects extra

matter fields that were not present before. At the perturbative level the theory is simply

a U(1)rank(ADE) gauge theory with some charged matter, and hence similar to a CP n

model. Non-perturbatively, a non-vanishing 4-flux leads to a spontaneous breakdown

of supersymmetry, unless a bare coupling is added by hand. In this case a mass gap

appears and supersymmetric ground states are naturally associated with singularities in

the moduli space. At large distances the Kähler potential becomes then irrelevant, and

the theory becomes a topological field theory with Chern-Simons lagrangian L = ν W̃ (Σ).

It can probably be interpreted along the lines of [7] as some kind of abelian WZW model

at “level ν”.

We see that switching on the 4-flux is a quite drastic operation, and resembles a bit

to switching on a shift vector in orbifold compactifications. It would seem worthwhile to

investigate the rôle of the 4-flux also from that perspective.
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